Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in Hep G2 cells.

نویسندگان

  • Y Hidaka
  • H Hotta
  • Y Nagata
  • Y Iwasawa
  • M Horie
  • T Kamei
چکیده

We have reported previously that NB-598 competitively inhibits human squalene epoxidase and strongly inhibits cholesterol synthesis from [14C]acetate in cultured cells. Furthermore, multiple oral administration of NB-598 decreased serum cholesterol levels in dogs (Horie, M., Tsuchiya, Y., Hayashi, M., Iida, Y., Iwasawa, Y., Nagata, Y., Sawasaki, Y., Fukuzumi, H., Kitani, K., and Kamei, T. (1990) J. Biol. Chem. 265, 18075-18078). In the present study, the effects of NB-598 on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and low-density-lipoprotein (LDL) receptor were examined using a human hepatoma cell line Hep G2. Incubation of Hep G2 cells with NB-598 for 18 h increased HMG-CoA reductase activity in a dose-dependent manner. However, the increase in activity induced by NB-598 was lower than that induced by L-654,969 (a potent HMG-CoA reductase inhibitor), although NB-598 inhibited cholesterol synthesis more potently than L-654,969. On the other hand, HMG-CoA reductase mRNA was increased to the same extent by both inhibitors. These results demonstrate that NB-598 does not inhibit the synthesis of non-sterol derivative(s) of mevalonate, which regulate HMG-CoA reductase activity at the post-transcriptional level. NB-598 increased the binding of 125I-LDL to Hep G2 cells. LDL receptor mRNA was also induced by NB-598. In the presence of LDL or cycloheximide, NB-598 did not increase LDL receptor activity. These results demonstrate that the induction of LDL receptor activity by NB-598 is due to increases in mRNA and protein through the inhibition of cholesterol synthesis at the squalene epoxidase step. From these observations, squalene epoxidase inhibitor is expected to be highly effective in the treatment of hypercholesterolemia and also is very useful as a research tool for studying the regulation of cholesterol metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual roles for cholesterol in mammalian cells.

The structural features of sterols required to support mammalian cell growth have not been fully defined. Here, we use mutant CHO cells that synthesize only small amounts of cholesterol to test the capacity of various sterols to support growth. Sterols with minor modifications of the side chain (e.g., campesterol, beta-sitosterol, and desmosterol) supported long-term growth of mutant cells, but...

متن کامل

Regulation of squalene epoxidase in HepG2 cells.

Regulation of squalene epoxidase in the cholesterol biosynthetic pathway was studied in a human hepatoma cell line, HepG2 cells. Since the squalene epoxidase activity in cell homogenates was found to be stimulated by the addition of Triton X-100, enzyme activity was determined in the presence of this detergent. Incubation of HepG2 cells for 18 h with L-654,969, a potent competitive inhibitor of...

متن کامل

Regulation of squalene epoxidase activity in rat liver.

Regulation of squalene epoxidase activity was examined in rat hepatic microsomes. The hepatic squalene epoxidase activity was high in the dark period and low in the light period. Three percent cholestyramine feeding increased the hepatic squalene epoxidase activity by 2.5-fold, and the administration of lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, incre...

متن کامل

Pharmacological control of the mevalonate pathway: effect on arterial smooth muscle cell proliferation.

The mevalonate (MVA) pathway is involved in cell proliferation. We investigated drugs acting at different enzymatic steps on rat aorta smooth muscle cell (SMC) proliferation. Competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (0.1-10 microM) dose-dependently decreased (up to 90%) SMC proliferation. This effect was prevented by 100 microM MVA, 10 microM all-trans farnesol ...

متن کامل

Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes.

We recently demonstrated that squalene synthase (SQS) inhibitors reduce plasma triglyceride through an LDL receptor-independent mechanism in Watanabe heritable hyperlipidemic rabbits (Hiyoshi et al. 2001. Eur. J. Pharmacol. 431: 345-352). The present study deals with the mechanism of the inhibition of triglyceride biosynthesis by the SQS inhibitors ER-27856 and RPR-107393 in rat primary culture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 20  شماره 

صفحات  -

تاریخ انتشار 1991